Supporting Energy Transition in Transmission Systems: An Operator’s Experience Using Electromagnetic Transient Simulation
The electric power industry is faced with the challenges of mitigating climate change, maintaining low electricity prices, and satisfying high reliability requirements for power supply. The increased application of power electronics devices is the inevitable result of the changes being experienced by the system. Careful analysis is required to install and operate power electronics devices. This article describes the use of electromagnetic transient (EMT) simulation on the French transmission grid to meet these new challenges in the context of energy transition.
Read More >
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS/E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established.
Read More >
Planning With Multiple Transmission and Storage Investment Options Under Uncertainty: A Nested Decomposition Approach
Achieving the ambitious climate change mitigation objectives set by governments worldwide is bound to lead to unprecedented amounts of network investment to accommodate low-carbon sources of energy. Beyond investing in conventional transmission lines, new technologies, such as energy storage, can improve operational flexibility and assist with the cost-effective integration of renewables. Given the long lifetime of these network assets and their substantial capital cost, it is imperative to decide on their deployment on a long-term cost-benefit basis. In this paper, we propose a novel, efficient, and highly generalizable framework for solving large-scale planning problems under uncertainty by using a temporal decomposition scheme based on the principles of Nested Benders.
Read More >
A Probabilistic Transmission Planning Framework for Reducing Network Vulnerability to Extreme Events
The restructuring of electric power industry has brought in plenty of challenges for transmission expansion planning (TEP), mainly due to uncertainties. The commonly used probabilistic TEP approach requires the network to meet an acceptable risk criterion. However, a series of blackouts in recent years caused by extreme weather-related events have raised the concerns about network vulnerability through calculating the expected risk value. In this paper, we have proposed the concept that TEP should be economically adjusted in order to make network less vulnerable to extreme events (EEs) caused by climate change, e.g., floods or ice storms.
Read More >
Robust Resiliency-Oriented Operation of Active Distribution Networks Considering Windstorms
Recent climate changes have created intense natural disasters, such as windstorms, which can cause significant damages to power grids. System resilience is defined as the ability of the system to withstand such high-impact low-probability events. This paper proposes a robust resilient operational schedule for active distribution networks against windstorms. In order to capture dynamic behaviors of these disasters, zonal disaster-specific uncertainty sets associated with the windstorm are proposed.
Read More >
From Reliability to Resilience: Planning the Grid Against the Extremes
Although extreme events, mainly natural disasters and climate change-driven severe weather, are the result of naturally occurring processes, power system planners, regulators, and policy makers do not usually recognize them within network reliability standards. Instead, planners have historically designed the electric power infrastructure accounting for the so-called credible (or “average”) outages that usually represent single or (some kind of) simultaneous faults (e.g., faults on double circuits).
Read More >
A Multi-State Model for Transmission System Resilience Enhancement Against Short-Circuit Faults Caused by Extreme Weather Events
Due to global climate change, the effect of extreme weather on power systems has attracted extensive attention. In the prior-art grid resilience studies, the hurricanes or wildfires are mainly defended in terms of expected line damages, while they are prone to trigger short-circuit fault (SCF) evolved with dynamic influence in reality. In this paper, a fragile model is developed to evaluate the nodal SCF probability considering the insulation aging of equipment and extreme weather condition.
Read More >
Stochastic Unit Commitment in Isolated Systems With Renewable Penetration Under CVaR Assessment
Isolated regions and islands are facing imported fossil-fuel dependency, higher electricity prices, and vulnerability to climate change. At the same time, they are increasing their renewable penetration and, therefore, risk for electric utilities. Integrating stochastic energy resources in noninterconnected systems may take advantage of an intelligent and optimized risk-averse unit commitment (UC) model. This paper presents a two-stage stochastic UC model with high renewable penetration including reserve requirements for the efficient management of uncertainty.
Read More >
Resilience Enhancement With Sequentially Proactive Operation Strategies
Extreme weather events, many of which are climate change related, are occurring with increasing frequency and intensity and causing catastrophic outages, reminding the need to enhance the resilience of power systems. This paper proposes a proactive operation strategy to enhance system resilience during an unfolding extreme event. The uncertain sequential transition of system states driven by the evolution of extreme events is modeled as a Markov process. At each decision epoch, the system topology is used to construct a Markov state. Transition probabilities are evaluated according to failure rates caused by extreme events.
Read More >
Hydrogen-Electric Aircraft Technologies and Integration: Enabling an Environmentally Sustainable Aviation Future
As the global community grapples with growing concerns of a changing climate, many eyes have turned to the sustainability of the transportation sector. In the United States, transportation is currently the leading category contributing to all greenhouse gas emissions, producing more emissions per year than the electricity generation, industry, commercial and residential, and agricultural sectors individually. As various transportation modes transition to more sustainable models, such as with the use of battery-electric vehicles, the aviation sector has struggled to identify effective solutions for future sustainability goals, largely due to the difference in power and energy requirements of aircraft, as compared to other vehicles.
Read More >